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In a fiozcn  orbit the argument of perigee and ccccntricit  y remain fixed due to the
balancing of the secular perturbations of the even zol~al harmonics with the long period
pcrttlr~ations  of the odd zonal harmonics constant  [Chobotov,  1991, chapter 11].
l>cviations from this ideal steady state lead to closed CUI-VCS  in the (c,a$ phase plane. These
curves can remain nearly closed even under the influcr ICC of perturbing forces such as drag
and solar radiation pressure. If ncccssary orbital maneuvers can be applied to rccovcr  any
drifts duc to these forces. For most frozen orbits, d ic pcrigcc is frozen at 90”, and the
eccentricity is very low.  In addition, there is a small range of inclinations where fi-ozen
orbits have been demonstrated numerically at w270” [Smith, 1986] and for highly
ccccntric  orbits (e.g., Molniya  orbits). Utilization of the frozen orbit effectively rcduccs
altitude variation over the northern hcmisphcrc  as the orbital shape more closely matches
the equatorial bulge. The low-ccccntricit y frozen orbit was fi nt dcscribcd for use on
SEASAT [Cutting, Born, & Frautnick,  1978] but }Ias also been used or proposed for
nurncrous  other missions, including the Atmospheric lxplorcr (Al~)  and the Heat Capacity
Mapping Mission (HCMM)  [Herder, C,ullcn, & Glass, 1979]; I,ANIJSAT [Mclntosh  &
I Iassctt,  1982]; GEOSAI_’ morn, 1987; Shapiro & Pine, 1988]; NROSS [McClain,
1987]; and ‘1’OPEX/Poseidon [Smith, 1986; Vincent, 1990, 1991; Fraucnholz,  1995].

~’his paper will  focus on analytical and numctical  t r ea tments o f  t h e
l’OPEX/l>oscidon  satellite orbit and will usc cxtcnsivc  observations from the primary
three-year mission to demonstrate the stability of the frozen orbit and the validity of the
analytical treatments. TOPEX/Poseidon
was launched by an Arianc 42P on August
10,  1992 with injection occurring at
23:27:05  UTC, approximately 19 min. 57
scc aficr lift off. ~c operational orbit was
acquired on Scptcmbcr 21, 1992, some 42
days after launch, following a scqucncc  of
six orbital acquisition maneuvers [Bhat
1993]. The joint US/French mission** is
designed to study global ocean circulation
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and it.. interaction with the atmosphere to better understand the F.arth’s  climate. This goal
is accomplished utilizing a combination of satellite altimetry data and precision orbit
determination to prccisc]y dctcrminc  ocean surface topography. ‘1’o  facilitate this procc~
the satellite is rnaintaincd  in a nearly circular, frozen o~bit (e = 0.000095 and 0=90”)  at an
altitude of =1336 km and an inclination of i = 66.04°. ~’his provides an exact repeat
ground track every 127 revolutions (=9.9 days) and overflies two altimeter vcr-ification
sites: a NASA site off- the coast of Point Conception, California (Iatitudc  34.46910 N,
longitude 120.680810 W), and a CNES site near the islands of 1 ampionc  and Larnpcdusa
in the Mcditcrrancan  Sca (latitude 35.54649” N, longitude 12.32054”E).

Previous analytic treatments of the
fi-ozcn orbit have been performed usingJ2  and J3
perturbations with numerical extensions to 17th
order zonal fields. In the present analysis, stable
low-eccentricity frozen orbit solutions will bc
analytically demonstrated using a comp]ctc
zonal expansion of the gcopotcntial  field. A
general formula for the frozen orbit in terms of
the mean clcrncnts  will bc derived. This analytic
solution rnatchcs  the earlier results with the
appropriate truncation. A geomet r ica l
in t e rp re ta t ion  o f  the  fromn orbi t  wil l  bc
provided in terms of trajectories in the phase
plane of the non-singular clcmcnts
(ccos~,esin~),  and these trajcctor-ics  will bc seen

to be nearly circular. This graphical tcchniquc
will demonstrate that for any specific low
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ccccntr-icity  orbit, there is only onc fiozcn orbit point, either at the orbital north or south
pole, and that the transition bctwccn  tbc two possible fixed points occurs continuously in
the non-singular phase plane as the fixed point c.rosscs the origin. Furthcrrnorc,  as
eccentricity incrcascs, the apparent breakdown of the frozen orbit as o circulates through
the entire range of (O, 360°) occurs when the closed t~ ajcctorics  in phase space enclose the
origin. In other words, the concept of a critical eccentricity bcycmd which the orbit is no
longer frozen is a fiction resulting from analyzing the trajectories in an inappropriate phase
plane, and the trajectories will always remain closed in the (ecosar,esin  CO) phase plane.

The general zonal  pcrtu~-bations
arc [Groves, 1960; Mcrson, 1966]:

on the rncan eccentricity and argument of pcrigcc
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Number of Zonal Terms in Gravity Field the cigcnvalucs  of the Jacobean of the
CritM point ecmntity as a function of number of zonal linearized systcm, evaluated at the fixed

harmonics m gravity expansion. Posithm values indicate CO=90”,
while negative values indiito *270”. point.., determine the stability of the

nonlinear systcm in some neighborhood
about the steady state. 3“his procedure is used bccausc it is us~lally  not possible to SOIVC the
nonlinear systcm  explicitly. This complete stability analysis will be given. The standard
method of analysis is as follows. First, determine the location of any fixed points, or steady
states, (the solutions of e = ti = O) of the system. This occurs when COSIO = O, i.e., o =90° or
0=270”. Dcterrnination  of the corresponding eccentricity is more complicated, and will be
derived in detail in the paper. The result is

This solution is valid cxccpt  for a regime very CIOSC to cosi = lIJS (i=63.4°),  where the
small eccentricity approximation fails. This
the paper. When e~~ <O, the frozen orbit
o c c u r s  a t  co=2700  and e = –e~~c= -CSS.
These solutions correspond to the center of
the contours falling on the negative y axis
in the (ccos~,  esimn) phase plane. The J3
approximation reduces to
e. = –J3RC sin i/2J2a and hm a period of

2{{*(+2’)} as ‘as bee]
previously demonstrated. The J3 contours
in  the  nonsingular  p h a s e  p l a n e  a r e
dcscribcd by the equation

X 2 + (y – eo)
2 = R 2 a n d in traditional

so-called cn”ticd  inclitm  (ion will be explored in
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coordinates C2 – 2eeo sin~ + c; = R2.

“1’his  paper is relevant to t}lc astrodynarnics,  guidance and control, and remote
sensing technical sessions of the conference. It extends the proof of the existence of low-
ccccntricity  fromn orbit to a complctc  zonal gcopc)tcntial and derives and explicit formula
for the fromn  eccentricity as a fhnction  of the gravity field. “II)c low eccentricity frozen
orbit is cxtrcmcly  uscfhl  for remote sensing satellites s~lch as those in the Mission to Planet
Earth, as the altitude variation and hcncc variability in observation conditions is
minimized. Furthcnnorc,  the paper will bc supplcme~ltcd  with cxtcnsivc  observations from
the T0P13X/I)oseidon  mission. These observations will bc cornparcd  with the analytic
and numerical predictions, and will demonstrate the possibility of maintaining an
cxtrcmcly  low ccccntr-icity orbit for several years.
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